EAN-136952060001340   EAN-13 barcode 6952060001340
Product NameSirui N-2004KX 4-Section Aluminum Alloy Tripod, 65" Tripod Max Height, 63" Monopod, 33.1 lbs Load Capacity
CategoryElectronics / Photography
Short DescriptionWeight:6 pounds
Amazon.comA Buy on Amazon ~ B004QC8AWI
Price New169.95 US Dollars    (curriencies)
Price Used165.21 US Dollars    (curriencies)
Width3.94 inches    (convert)
Height18.62 inches    (convert)
Length3.94 inches    (convert)
Weight96 ounces    (convert)
  • One Leg Unscrews to Become Monopod. Maximum Height of 65".
  • Load Capacity of 33 lb. Forged Aluminum Chassis.
  • Rapid/Reversible Center Column
  • Short Center Column for Low-Angle Shots
  • Folds Down to 18.1". Weighs Just 3.5 lb.
Long DescriptionThe Sirui N-2004 4-Section Aluminum Tripod is a great tripod for travelers and other adventurous photographers who need to pack light and reserve the option to, at a moment's notice, slim down their camera's support system to just a monopod. The N-2004 features a leg that unscrews and attaches to a second included mounting plate and, optionally, the tripod's removable center column, to form a monopod that ranges from 16.9" (collapsed) to 66.2" long (with the center column attached). Reaching a maximum height of 65", the tripod itself is quite versatile in its own right - the N-2004 weighs just 3.5 lb but supports up to 33 lb thanks to its thick upper leg sections and forged aluminum construction. It's suitable for use with just about any head and any 35mm camera, DSLR, point & shoot, or camcorder. The compact N-2004 tripod's legs fold upward 180° to achieve a relatively compact folded length of 18.1" - even with many camera head models attached. The entire package stays very compact to fit comfortably in most carry-on bags and many backpacks. The tripod's center column is reversible, and the N-2004 comes with a short center column so that you can set up extremely close to the ground for ultra-low-angle shooting. With the short center column installed, you can set the legs at their wide angle (80°) and shoot from only 6.7" from the ground. Forged aluminum results in stronger components than the traditional casting process that's often used for tripod chassis. Forging leads to more compacted metal and enhances the integrity of metal grains so they remain consistent and continuous. This leads to a longer product life and better performance An anodizing surface treatment, produced by an electrolytic oxidation process to increase the thickness of the natural oxide layer on the surface of metal parts, is applied to increase corrosion & wear resistance and surface hardness, and to enhance color durability
Similar Items6952060000336: Sirui K-20X Ball Head
6952060000329: Sirui K-10x 33mm Ballhead With Quick Release, 44.1 Lbs Load Capacity
4012240702527: 77mm Uv Haze Filter B+w Schneider Optics F-Pro Mrc
0837654097878: Sirui G-20 36mm Ballhead With Quick Release, 44.1 Lbs Load Capacity
0711554130128: Op/Tech Usa System Connector Uni Adaptor Loop - Regular
0012240702521: B+w 77mm Clear Uv Haze With Multi-Resistant Coating (010m)
Created08-20-2013 2:19:25am
Modified05-01-2017 1:29:40pm
Search Googleby EAN or by Title
Query Time0.0026019

Article of interest

Barcodes are a graphical representation of information that can be easily read by machines. People read text easy enough but machines find this to be too complex so we use barcodes to simplify the process.

Barcodes can store numbers, letters and all the special characters. What can be stored in the barcode depends on which type of barcode is being used. But the basics of how a barcode works is the same regardless of what type of code it is, what information is stored in the barcode or what type of scanner is being used.

barcode scanIt all starts with the scan. The scanner, regardless of which type you are using, will examine the barcode image. The lines (or blocks in the case of 2D barcodes) will either reflect or absorb light. When we look at the barcode, we tend to see the dark stripes and think of those as the important parts. Those are the parts that absorb the light and the white parts reflect the light. So the scanners tend to see the barcodes in reverse of how we think of them. But the dark and light portions of the code on their own don't automatically become the information stored in the code. In most cases, it is the relative placement and size of each dark and light stripe (or block) that make up the information. There are also special markers that help the scanner know which direction the barcode is facing when it is scanned. This allows the scanning process to work even if the barcode is upside down when it is scanned. The scanner simply processes the scanned data in reverse in this case.

barcode oscolloscopeTaking a look at an oscolloscope screen as a scanner passes over barcode, you can see that the stripes reflect back light and the scanner registers the changes as high and low levels. So what looks like a simple image is really a rather complex set of layered encryption to store the data. The encryption isn't done to hide the information in this case. Instead it is done to make it easy for the machine to read the information. Since the base language of machines is binary (1 and 0) it is easy for them to read this type of information even if it takes several steps to turn this back into something that people can understand.

binaryThe size of each high and low are combined to make binary data. A series of 1 (one) and 0 (zero) values which are strung together then decoded into the actual information. Up to this point, the process is the same for all barcodes regardless of how they are stored. Getting the lines or dots into binary is the easy part for the machine. The next step is to make this binary code into something useful to people. That step depends on  which type of barcode is being scanned. Each type of barcode has its own encoding methode. Just like human languages, what seems to be two similar words (or barcodes in this case) could actually be two very different values even though they have the same basic letters (or bars).

So you can see that the scanning devices need to know not only how to turn the bars or dots into binary, but after they have done that they need to know how to turn that binary string into the original information. But regardless of the encoding process the basic steps are the same. Process the light and dark areas, convert them to binary, decode the binary, pass the information on to the receiving device which is normally a computer program of some sort.

Once the decoded data reaches the computer program, there is no telling how the information is to be used. The grocery store will use the information to keep track of the products you purchased as you go through the register. A manufacturer will use the code to identify where they are storing their parts. And shipping companies use the codes to keep track of the packages they are delivering.

Now that you know a little about the mechanical portion of the process, take some time to learn about the different types of barcode scanners and the different ways the information can be encoded into barcodes.